

CSSE 230 Day 11

Size vs height in a Binary Tree

After today, you should be able to...

... use the relationship between the size and height of a tree to find the maximum and minimum number of nodes a binary tree can have

...understand the idea of mathematical induction as a proof technique

Term project starts Day 13

Preferences for partners for the term project (groups of 3) Partner preference survey on Moodle – Day 11

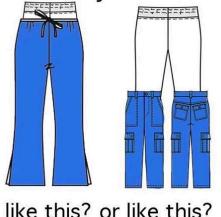
- Preferences balanced with experience level + work ethic
 - If course grades are close, I'll honor "prearranged teammate" preferences
 - If no "prearranged teammate", best to list several potential members
 - If you don't want to work with someone, that preference will be honored
 - Historical evidence indicates working with others in a similar current CSSE230 grade attainment level often pans out best

Some questions you might consider asking potential programming partners:

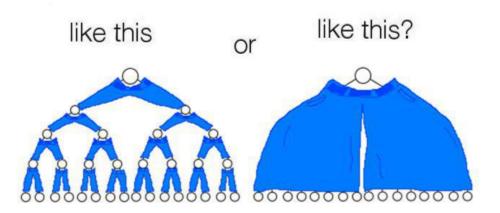
- What final grade range are you aiming for in CSSE230?
- Do you like to get it done early or to procrastinate?
- Do you prefer to work daytime, evening, late night?
- Do you normally get a lot of help on the homework?
- Survey is due Fri Jan 10, 5 PM do it as soon as you can

Some meme humor

If pants wore pants... would they wear them



If a binary tree wore pants, would it wear them



http://www.smosh.com/smosh-pit/memes/internets-best-reactions-if-dog-wore-pants http://knowyourmeme.com/photos/1272773-if-a-dog-wore-pants

Other announcements

- Today:
 - Size vs height of trees: patterns and proofs
- Wrapping up the BST assignment, and worktime.

Q2-4

Extreme Trees

- A tree with the maximum number of nodes for its height is a full tree.
- full binary tree each non-leaf node has exactly two children, all leaves at same level.
- A tree with the minimum number of nodes for its height is called degenerate
- Height matters!
 - Recall that the algorithms for search, insertion, and deletion in a binary search tree are O(h(T))

Proving a Universal Statement

• Example:

Open statement *S*(*n*)

For all integers
$$n \ge 0$$
, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

- "for all" (∀) is called the universal qualifier
- How to prove?
 - Can't do it one-by-one: there are infinitely many statements to prove!
 - Could try direct proof: show $\forall n S(n)$
 - Typically, pick arbitrary but specific n and prove using logic
 - But, often easier to use induction: show S(0) and $\forall k \ (S(k) \rightarrow S(k+1))$

Mathematical Induction

To prove that P(n) is true for all $n \ge n_0$:

- 1. Basis step: Prove that $P(n_0)$ is true (base case), and
- 2. Induction step: Prove that if P(k) is true for any $k \ge n_0$, then P(k+1) is also true.

[This part of the proof must work for all such k!]

$$(P(n_0) \& \forall k (P(k) \to P(k+1))) \to \forall n P(n)$$

- Note: we still need to prove a universal statement! But the advantage is that we're allowed to assume the induction hypothesis (truth of the "previous case" P(k)) in proving the "next case" P(k + 1).
- Example: prove the arithmetic sum formula

Strong Induction

 $\left(P(n_0) \& \forall k \big((P(n_0) \& \cdots \& P(k)) \to P(k+1) \big) \right) \to \forall n P(n)$

- Strengthen the induction hypothesis
- Rather than assume truth of just the previous case P(k), assume truth of all previous cases $P(n_0), P(n_0 + 1), P(n_0 + 2), \dots, P(k)$.

Q6

Strong Induction

- To prove that p(n) is true for all $n \ge n_0$:
 - Prove that p(n₀) is true (base case), and
 - For all $k > n_0$, prove that if we assume p(j) is true for $n_0 \le j < k$, then p(k) is also true
- An analogy:
 - Regular induction uses the previous domino to knock down the next
 - Strong induction uses all the previous dominos to knock down the next!
- Example: prove the upper bound on N(T) in terms of h(T)