

CSSE 230 Day 11

Size vs height in a Binary Tree

After today, you should be able to...
... use the relationship between the size and height of a tree to find the maximum and minimum number of nodes a binary tree can have ...understand the idea of mathematical induction as a proof technique

Term project starts Day 13

Preferences for partners for the term project (groups of 3) Partner preference survey on Moodle - Day 11

- Preferences balanced with experience level + work ethic
- If course grades are close, l'll honor "prearranged teammate" preferences
- If no "prearranged teammate", best to list several potential members
- If you don't want to work with someone, that preference will be honored
- Historical evidence indicates working with others in a similar current CSSE230 grade attainment level often pans out best
Some questions you might consider asking potential programming partners:
- What final grade range are you aiming for in CSSE230?
- Do you like to get it done early or to procrastinate?
- Do you prefer to work daytime, evening, late night?
- Do you normally get a lot of help on the homework?
- Survey is due Fri Jan 10, 5 PM - do it as soon as you can

Some meme humor

If pants wore pants...
would they wear them

like this? or like this?

If a binary tree wore pants, would it wear them

Other announcements

- Today:
- Size vs height of trees: patterns and proofs
- Wrapping up the BST assignment, and worktime.

Extreme Trees

- A tree with the maximum number of nodes for its height is a full tree.
- full binary tree - each non-leaf node has exactly two children, all leaves at same level.
- A tree with the minimum number of nodes for its height is called degenerate
- Height matters!
- Recall that the algorithms for search, insertion, and deletion in a binary search tree are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)

Proving a Universal Statement

- Example:

Open statement $S(n)$
For all integers $n \geq 0, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.

- "for all" (\forall) is called the universal qualifier
- How to prove?
- Can't do it one-by-one: there are infinitely many statements to prove!
- Could try direct proof: show $\forall n S(n)$
- Typically, pick arbitrary but specific n and prove using logic
- But, often easier to use induction: show $S(0)$ and $\forall k(S(k) \rightarrow S(k+1))$

Mathematical Induction

To prove that $P(n)$ is true for all $n \geq n_{0}$:

1. Basis step: Prove that $P\left(n_{0}\right)$ is true (base case), and
2. Induction step: Prove that if $P(k)$ is true for any $k \geq n_{0}$, then $P(k+1)$ is also true.
[This part of the proof must work for all such k !]

$$
\left(P\left(n_{0}\right) \& \forall k(P(k) \rightarrow P(k+1))\right) \rightarrow \forall n P(n)
$$

- Note: we still need to prove a universal statement! But the advantage is that we're allowed to assume the induction hypothesis (truth of the "previous case" $P(k)$) in proving the "next case" $P(k+1)$.
- Example: prove the arithmetic sum formula

Strong Induction

$\left(P\left(n_{0}\right) \& \forall k\left(\left(P\left(n_{0}\right) \& \cdots \& P(k)\right) \rightarrow P(k+1)\right)\right) \rightarrow \forall n P(n)$

- Strengthen the induction hypothesis
- Rather than assume truth of just the previous case $P(k)$, assume truth of all previous cases $P\left(n_{0}\right), P\left(n_{0}+1\right), P\left(n_{0}+2\right), \ldots, P(k)$.

Strong Induction

- To prove that $p(n)$ is true for all $n \geq n_{0}$:
- Prove that $p\left(n_{0}\right)$ is true (base case), and
- For all $k>\mathrm{n}_{0}$, prove that if we assume $p(j)$ is true for $n_{0} \leq j<k$, then $p(k)$ is also true
- An analogy:
- Regular induction uses the previous domino to knock down the next
- Strong induction uses all the previous dominos to knock down the next!
- Example: prove the upper bound on $\mathrm{N}(\mathrm{T})$ in terms of $h(T)$

